Skewness in Lévy Markets

Ernesto Mordecki

Universidad de la República, Montevideo, Uruguay

Lecture IV. PASI - Guanajuato - June 2010¹

¹Joint work with José Fajardo Barbachan

Outline

Aim of the talk Understand the shape of the implied volatility curve (or smile) in terms of the parameters of a Lévy process.

Lévy Market

Duality of option prices

Symmetric markets

Skewness in Lévy Markets

Lévy market

Has two assets:

A deterministic savings account:

$$B_t = e^{rt}, \qquad r \ge 0,$$

A random stock

$$S_t = S_0 e^{X_t}, \qquad S_0 > 0,$$

where $\{X_t\}$ is a Lévy process under a certain probability **P**. S pays dividends at constant rate $\delta \ge 0$.

Observe: As

$$X_t = \sigma W_t + (r - \sigma^2/2)t$$

is a Lévy process, we generalize Black Scholes model.

Lévy-Khinchine formula

For $v \in \mathbb{R}$,

$$\mathbf{E} \, \mathbf{e}^{i \mathbf{v} \mathbf{X}_t} = \exp \left(t \psi(i \mathbf{v}) \right)$$

where

$$\psi(z) = az + rac{(\sigma z)^2}{2} + \int_{\mathbb{R}} (e^{zy} - 1 - zh(y)) \Pi(dy)$$

Here:

• $h(y) = y \mathbf{1}_{\{|y| < 1\}}$ is a truncation function

- a is a real constant
- $\sigma \ge 0$ is the variance of the gaussian part
- Π such that $\int (1 \wedge y^2) \Pi(dy) < +\infty$ is the jump measure

Examples:

Brownian motion:

$$\psi(z) = \frac{(\sigma z)^2}{2}$$

Poisson Process with jump magnitude c:

$$\psi(\mathbf{z}) = \lambda(\mathbf{e}^{\mathbf{c}\mathbf{z}} - \mathbf{1}),$$

Sum $X_1 + X_2$ of independent LP:

$$\psi_1(\mathbf{Z}) + \psi_2(\mathbf{Z}).$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

Option pricing and implied volatility

Let us recall BS Formula:

$$V(S_0,T) = S_0 \Phi(\mathbf{x}_+) - \mathbf{e}^{-rT} K \Phi(\mathbf{x}_-)$$

with

$$x_{\pm} = \left(\log \frac{S_0 e^{rT}}{K} \pm \frac{1}{2} \sigma^2 T\right) / (\sigma \sqrt{T}).$$

In fact the price is $V(S_0, K, T, r, \sigma)$ depending on five parameters:

- Three quantities writen in the contract:
 - ► S₀ the spot price of the stock (i.e. today's price)

- K the strike or excercise price
- ► *T* the expiration, or excercise time.

Market dependent parameters

- the interest rate in the market r considered "observable" and obtained usually from US bonds with the same expiration
- the volatility σ

Implied volatility Empirical practice shows that option prices

do not follow BS model. Despite lots of reasons, to still use BS

formula given a price QP, based on the fact that V is increasing in σ (i.e. $\partial V/\partial \sigma > 0$) people solve the equation

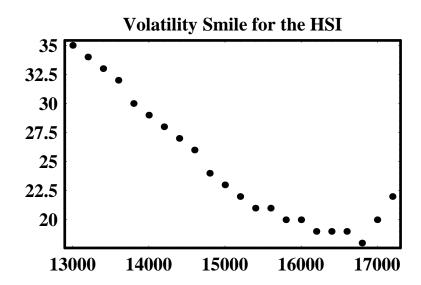
$$V(\sigma) = QP,$$

to obtain a value of σ called the volatility *implied* by the option price *QP*.

An example of implied volatility

In the next slide we have a plot of implied volatility for the Hong Kong stock exchante market. The asset is the *Hang Seng Index* (HSI).

- Date: June 15, 2006.
- Spot price $S_0 = 15248$ (HK dollars)
- Strikes from 13000 to 17200 every 200 HK dollars.
- r = 0.025 taken from futures on the HSI.
- > T = 32/247: 247 trading days, 32 days to expiration.



▲□▶ ▲圖▶ ▲圖▶ ▲圖▶ ▲圖 - 釣�?

Esscher transform

We assume that X is also a Lévy process under the *risk neutral* probability **Q**. We furthermore assume that

$$d(\mathbf{P} \mid \mathcal{F}_t) = e^{\theta X_t - \psi(\theta)t} d(\mathbf{Q} \mid \mathcal{F}_t),$$

i.e. **P** and **Q** are equivalent measures, and the Radon-Nykodim derivative can be expressed as an exponential of the Lévy process (the so called "log-stock price" process). This change of measure is known as the *Esscher transform*.

Q is the probability used to price derivatives.

•
$$e^{X_t - (r - \delta)t}$$
 is a **Q**-martingale.

Duality of eurpean option prices

The price of a call option is

$$Call(S_0, K, r, \delta, \psi_{\mathbf{Q}}) = \mathbf{E}_{\mathbf{Q}} e^{-rT} (S_0 e^{X_T} - K)^+ =$$

$$= \textbf{E}_{\textbf{Q}}(e^{X_T}e^{(\delta-r)T})e^{-\delta T}(S_0 - \textit{K}e^{-X_T})^+$$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ◆ □ ● ● ● ●

$$= \mathbf{E}_{ ilde{\mathbf{Q}}} \, \mathbf{e}^{-\delta \mathcal{T}} (S_0 - \mathit{K} \mathbf{e}^{ ilde{\mathcal{X}}_{\mathcal{T}}})^+$$

$$= Put(K, S_0, \delta, r, \psi_{\tilde{\mathbf{Q}}})$$

the price of a Put option! But we changed

$$\blacktriangleright S_0 \leftrightarrow K, r \leftrightarrow \delta$$

 $\blacktriangleright \ \mathbf{Q} \rightarrow \tilde{\mathbf{Q}}$ the *dual* measure.

Duality of american option prices

Introduce the optimal stopping rules:

$$au_{c}^{*} = \inf\{t \geq 0 \colon S_{t} \geq \mathcal{B}_{c}(t)\} \land T, \ au_{p}^{*} = \inf\{t \geq 0 \colon S_{t} \leq \mathcal{B}_{p}(t)\} \land T.$$

where \mathcal{B}_c and \mathcal{B}_p are the *optimal stopping boundaries* **Theorem** Assume $\delta > 0$ and r > 0. Then

$$C_{am}(S_0, K, r, \delta, T, \psi) = P_{am}(K, S_0, \delta, r, T, \tilde{\psi}),$$

The boundaries satisfy:

$$\mathcal{B}_{c}(t)\mathcal{B}_{p}(t)=S_{0}K.$$

Remark: For Itô processes see Detemple (2001)

Duality for perpetual american options

The optimal stopping rules are

$$\begin{aligned} \tau_c^* &= \inf\{t \geq 0 \colon S_t \geq S_c^*\}, \\ \tau_p^* &= \inf\{t \geq 0 \colon S_t \leq S_p^*\}. \end{aligned}$$

Theorem If $\delta > 0$ and r > 0, we have

$$C_{perp}(S_0, K, r, \delta, T, \psi) = P_{perp}(K, S_0, \delta, r, T, \tilde{\psi}),$$

And the optial stopping levels satisfy

$$S_c^* S_p^* = S_0 K.$$

Dual market

Is X a Lévy process under Q? We know

$$d\left(\tilde{\mathbf{Q}} \mid \mathcal{F}_{t}\right) = e^{X_{T}} e^{(\delta-r)t} d\left(\mathbf{Q} \mid \mathcal{F}_{t}\right),$$

and we obtain that

$$\mathrm{e}^{\psi_{ ilde{\mathbf{Q}}}(z)} = \mathbf{E}_{ ilde{\mathbf{Q}}} \, \mathrm{e}^{z ilde{X}_1} = \mathbf{E} \, \mathrm{e}^{X_1} \mathrm{e}^{(\delta-r)} \mathrm{e}^{-zX_1}$$

$$= \mathbf{E}_{\mathbf{Q}} e^{(\delta - r)} e^{(1-z)X_1} = e^{\psi_{\mathbf{Q}}(1-z) - \psi_{\mathbf{Q}}(1)}$$

Concluding²

$$\psi_{\tilde{\mathbf{Q}}}(z) = \psi_{\mathbf{Q}}(1-z) - \psi_{\mathbf{Q}}(1).$$

²Fajardo-Mordecki (2003, 2006)

The Dual Market is a Lévy market with:

A deterministic savings account:

$$B_t = e^{\delta t}, \qquad \delta \ge 0,$$

A random stock

$$ilde{\mathsf{S}}_t = {{\it K}} {\it e}^{ ilde{\mathsf{X}}_t}, \qquad ilde{\mathsf{S}}_0 = {\it K} > 0,$$

where $\{\tilde{X}_t\}$ is a Lévy process under a **risk neutral** probability $\tilde{\mathbf{Q}}$.

Š pays dividends with constant rate r ≥ 0

Question: Is this dual market artificial?

▶ mm . . .

- Detemple (2001) calls it the "auxiliary" market.
- Š is the price of KS₀ dollars in stock unities, its a change of numeraire, as in Schroder (1999).
- In forex markets it is even more natural: Grabbe (1983) proposes:
 - ► S is the price of S₀ euros in US dollars
 - \tilde{S} is the price of *K* US dollars in euros
 - A call to buy S₀ euros at a strike price of K dollars has the same price of a put to buy K dollars with a strike of S₀ euros.

Symmetry

Observe: In Black Scholes model, the law of the discounted and reinvested stock (DRS) under the risk neutral and the dual measure coincide, because -W is a also Wiener process, and the DRS is a martingale. **Question:**

When the effect of the jumps is such that this symmetry property hold for Lévy markets?

Which are the jump distributions that preserve the symmetry?

Merton Model

Consider Merton Jump Diffusion model: i.e

$$\Pi(dy) = \lambda \frac{1}{\delta\sqrt{2\pi}} e^{-(y-\mu)^2/(2\delta^2)} dy,$$

Bates (1997) finds that this symmetry hold true if

$$2\mu + \delta^2 = 0.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

But: what happens for Lévy markets?

For Lévy markets, as

$$\psi_{\tilde{\mathbf{Q}}}(z) = \psi_{\mathbf{Q}}(1-z) - \psi_{\mathbf{Q}}(1)$$

we impose

$$\begin{split} \psi_{\mathbf{Q}}(\boldsymbol{z}) - (\boldsymbol{r} - \boldsymbol{\delta}) &= \psi_{\tilde{\mathbf{Q}}}(\boldsymbol{z}) - (\boldsymbol{\delta} - \boldsymbol{r}) \\ &= \psi_{\mathbf{Q}}(1 - \boldsymbol{z}) - \psi_{\mathbf{Q}}(1) - (\boldsymbol{\delta} - \boldsymbol{r}), \end{split}$$

and obtain³ the symmetry condition in Lévy markets is:

$$\Pi_{\mathbf{Q}}(dy) = e^{-y} \Pi_{\mathbf{Q}}(-dy).$$

that generalizes Bates (1997) result for Lévy markets, and answers a question raised by Carr and Chesney (1996)

³Details in Fajardo-M. (2003, 2006)

Symmetry condition on the density of the jump measure

Assume that our Lévy measure can has a density:

$$\Pi_{\mathbf{Q}}(dy) = \pi(y)dy.$$

Our symmetry condition then is

$$\pi(y)dy = \Pi_{\mathbf{Q}}(dy) = e^{-y}\Pi_{\mathbf{Q}}(-dy) = e^{-y}\pi(-y)dy,$$

concluding that the symmetry condition is

$$\pi(\mathbf{y}) = \mathbf{e}^{-\mathbf{y}} \pi(-\mathbf{y}).$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Symmetry in Merton model

The condition is

$$\lambda \frac{1}{\delta \sqrt{2\pi}} e^{-(y-\mu)^2/(2\delta^2)} = e^{-y} \lambda \frac{1}{\delta \sqrt{2\pi}} e^{-(-y-\mu)^2/(2\delta^2)}$$

that equating the exponets gives

$$(y - \mu)^2 = 2\delta^2 y + (y + \mu)^2.$$

The quadratic terms cancels, giving

$$-2\mu y=2\delta^2 y+2\mu y,$$

that gives Bate's condition:

$$2\mu + \delta^2 = 0$$
, or $\frac{\mu}{\delta^2} = -\frac{1}{2}$.

Corollary

Under the symmetry condition the volatility smile curve is symmetric in the log-moneyness $m = \log(K/F)$, with

$$F = e^{(r-\delta)T}S,$$

the futures price.

Proof First observe that, due to the put call parity, the implied volatiliy can either be determined equating the call prices or the put prices. Introduce

$$X_t^{\mathsf{o}} = X_t - (r - \delta)t.$$

Condition $S_t/e^{(r-\delta)t}$ is a **Q**-martingale, implies $E_{\mathbf{Q}}e^{X_T^o} = 1$. The duality condition in terms of ψ^o is

$$\psi^{\mathsf{o}}(\mathbf{Z}) = \tilde{\psi}^{\mathsf{o}}(\mathbf{Z}).$$

Now we introduce *m* in our formulas.

$$Call(S_0, \mathcal{K}, r, \delta, \psi_{\mathbf{Q}}) = e^{-rT} \mathbf{E}_{\mathbf{Q}} (S_0 e^{X_T} - \mathcal{K})^+ =$$

$$= e^{-rT} \operatorname{\mathsf{E}}_{\operatorname{\mathsf{Q}}}(S_0 e^{X^o_T + (r-\delta)T} - K)^+$$

$$= e^{-rT} \mathcal{F} \operatorname{\mathsf{E}}_{\operatorname{\mathsf{Q}}} \left(e^{X^o_T} - \mathcal{K}/(S_0 e^{(r-\delta)T}) \right)^+$$

$$=e^{-rT}\mathcal{F}\,\mathbf{E}_{\mathbf{Q}}(e^{X^o_T}-e^m)^+$$

$$= \mathbf{e}^{-rT} \mathbf{F} \times \mathbf{C}_1(\mathbf{m}, \psi^{\mathbf{o}}).$$

Similar computations show that

$$Put(K, S_0, \delta, r, \psi_{\mathbf{Q}}) = e^{-rT} \mathbf{E}_{\mathbf{Q}}(S_0 - K e^{X_T})^+ =$$

. . .

$$= e^{-rT} K \mathbf{E}_{\mathbf{Q}} (e^{-m} - e^{-X_T^o})^+$$

$$= e^{-rT}F P_1(m, \tilde{\psi}^o)$$

$$= \mathbf{e}^{-rT} \mathbf{F} \mathbf{P}_{1}(\mathbf{m}, \psi^{\mathsf{o}}),$$

the last equality by the symmetry condition.

Conclussion

Finally, if $\sigma_i = \sigma_i(m)$ is the implied volatility for the call option and a log-moneyness *m*, we have

$$F C_1(m, \psi^o) = K P_1(-m, \psi^o),$$

$$F C_1\left(m, \frac{\sigma_i^2}{2}(z^2-z)\right) = K P_1\left(-m, \frac{\sigma_i^2}{2}(z^2-z)\right).$$

As the l.h.s terms of this equation coincide, according to the definition of the implied volatility, the r.h.s. coincide too, giving that the implied volatility (determined by the puts) for -m is the same:

$$\sigma_i(m) = \sigma_i(-m)$$

Skewness in Lévy Markets

We propose to consider a Lévy market with jump structure of the form:

$$\Pi(dy) = e^{\beta y} p(y) dy,$$

where p(y) = p(-y). Most models satisfy this assumption. If we apply the symmetry condition in Lévy markets, we came to

$$\beta = -\frac{1}{2}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・

・
</

In this model we can quantify the deviation from symmetry.

We observe:

- In ForeX markets we expect $\beta + 1/2 \sim 0$.
- ▶ For stocks and indices we generally have $\beta + 1/2 \ll 0$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ □ のへぐ

There are some exceptions.

Further research

- Robustness of β across different models (CGMY, Meixner, Merton, Hyperbolic, etc.)
- Asymmetry premia: quantify movements of prices according to movements of β.
- Time dependent β(t), as longer maturities suggest more symmetric markets.

References

- BATES, D. (1997): The skewness premium: Option Pricing under Asymmetric Processes. Advances in Futures and Options Research, 9, 51–82.
- CARR, P. AND CHESNEY, M. (1996): American Put Call Symmetry. Preprint.
- DETEMPLE, J. (2001): American options: symmetry properties. In: Option pricing, interest rates and risk management Eds. Jouini, Cvitanic, Musiela. Cambridge University Press, 67–104.
- SCHRODER, M. (1999): Change of Numeraire for Pricing Futures, Forwards, and Options. *The Review of Financial Studies*, Vol. 12, No. 5, 1143–1163.
- FAJARDO, J. AND MORDECKI, E. (2006): Symmetry and Duality in Lévy Markets, *Quantitative Finance*, 6-3, pp. 219-227