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Outline

Aim of the talk Understand the shape of the implied volatility
curve (or smile) in terms of the parameters of a Lévy process.

Lévy Market

Duality of option prices

Symmetric markets

Skewness in Lévy Markets



Lévy market

Has two assets:

◮ A deterministic savings account:

Bt = ert , r ≥ 0,

◮ A random stock

St = S0eXt , S0 > 0,

where {Xt} is a Lévy process under a certain probability P.
S pays dividends at constant rate δ ≥ 0.

Observe: As
Xt = σWt + (r − σ2/2)t

is a Lévy process, we generalize Black Scholes model.



Lévy-Khinchine formula

For v ∈ R,
E eivXt = exp

(

tψ(iv)
)

where

ψ(z) = az +
(σz)2

2
+

∫

R

(ezy − 1 − zh(y))Π(dy)

Here:

◮ h(y) = y1{|y |<1} is a truncation function

◮ a is a real constant

◮ σ ≥ 0 is the variance of the gaussian part

◮ Π such that
∫

(1 ∧ y2)Π(dy) < +∞ is the jump measure



Examples:

◮ Brownian motion:

ψ(z) =
(σz)2

2

◮ Poisson Process with jump magnitude c:

ψ(z) = λ(ecz − 1),

◮ Sum X1 + X2 of independent LP:

ψ1(z) + ψ2(z).



Option pricing and implied volatility

Let us recall BS Formula:

V (S0,T ) = S0Φ(x+) − e−rT KΦ(x−)

with

x± =

(

log
S0erT

K
± 1

2
σ2T

)

/(σ
√

T ).

In fact the price is V (S0,K ,T , r , σ) depending on five
parameters:

◮ Three quantities writen in the contract:
◮ S0 the spot price of the stock (i.e. today’s price)
◮ K the strike or excercise price
◮ T the expiration, or excercise time.



Market dependent parameters

◮ the interest rate in the market r considered “observable”
and obtained usually from US bonds with the same
expiration

◮ the volatility σ

Implied volatility Empirical practice shows that option prices

do not follow BS model. Despite lots of reasons, to still use BS

formula given a price QP, based on the fact that V is increasing
in σ (i.e. ∂V/∂σ > 0) people solve the equation

V (σ) = QP,

to obtain a value of σ called the volatility implied by the option
price QP.



An example of implied volatility

In the next slide we have a plot of implied volatility for the Hong
Kong stock exchante market. The asset is the Hang Seng
Index (HSI).

◮ Date: June 15, 2006.
◮ Spot price S0 = 15248 (HK dollars)
◮ Strikes from 13000 to 17200 every 200 HK dollars.
◮ r = 0.025 taken from futures on the HSI.
◮ T = 32/247: 247 trading days, 32 days to expiration.
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Esscher transform

We assume that X is also a Lévy process under the risk neutral
probability Q. We furthermore assume that

d (P | Ft) = eθXt−ψ(θ)t d (Q | Ft) ,

i.e. P and Q are equivalent measures, and the Radon-Nykodim
derivative can be expressed as an exponential of the Lévy
process (the so called “log-stock price” process). This change
of measure is known as the Esscher transform.

◮ Q is the probability used to price derivatives.

◮ eXt−(r−δ)t is a Q-martingale.



Duality of eurpean option prices

The price of a call option is

Call(S0,K , r , δ, ψQ) = EQ e−rT (S0eXT − K )+ =

= EQ(eXT e(δ−r)T )e−δT (S0 − Ke−XT )+

= EQ̃ e−δT (S0 − KeX̃T )+

= Put(K ,S0, δ, r , ψQ̃)

the price of a Put option! But we changed

◮ S0 ↔ K , r ↔ δ

◮ Q → Q̃ the dual measure.



Duality of american option prices

Introduce the optimal stopping rules:

τ∗c = inf{t ≥ 0 : St ≥ Bc(t)} ∧ T ,

τ∗p = inf{t ≥ 0 : St ≤ Bp(t)} ∧ T .

where Bc and Bp are the optimal stopping boundaries
Theorem Assume δ > 0 and r > 0. Then

Cam(S0,K , r , δ,T , ψ) = Pam(K ,S0, δ, r ,T , ψ̃),

The boundaries satisfy:

Bc(t)Bp(t) = S0K .

Remark: For Itô processes see Detemple (2001)



Duality for perpetual american options

The optimal stopping rules are

τ∗c = inf{t ≥ 0 : St ≥ S∗
c},

τ∗p = inf{t ≥ 0 : St ≤ S∗
p}.

Theorem If δ > 0 and r > 0, we have

Cperp(S0,K , r , δ,T , ψ) = Pperp(K ,S0, δ, r ,T , ψ̃),

And the optial stopping levels satisfy

S∗
cS∗

p = S0K .



Dual market

Is X a Lévy process under Q̃? We know

d
(

Q̃ | Ft

)

= eXT e(δ−r)t d (Q | Ft) ,

and we obtain that

eψQ̃(z) = EQ̃ ezX̃1 = E eX1e(δ−r)e−zX1

= EQ e(δ−r)e(1−z)X1 = eψQ(1−z)−ψQ(1)

Concluding2

ψQ̃(z) = ψQ(1 − z) − ψQ(1).

2Fajardo-Mordecki (2003, 2006)



The Dual Market is a Lévy market with:

◮ A deterministic savings account:

Bt = eδt , δ ≥ 0,

◮ A random stock

S̃t = KeX̃t , S̃0 = K > 0,

where {X̃t} is a Lévy process under a risk neutral
probability Q̃.

◮ S̃ pays dividends with constant rate r ≥ 0



Question: Is this dual market artificial?

◮ mm . . .

◮ Detemple (2001) calls it the “auxiliary” market.

◮ S̃ is the price of KS0 dollars in stock unities, its a change of
numeraire, as in Schroder (1999).

◮ In forex markets it is even more natural: Grabbe (1983)
proposes:

◮ S is the price of S0 euros in US dollars
◮ S̃ is the price of K US dollars in euros
◮ A call to buy S0 euros at a strike price of K dollars has the

same price of a put to buy K dollars with a strike of S0

euros.



Symmetry

Observe: In Black Scholes model, the law of the discounted
and reinvested stock (DRS) under the risk neutral and the dual
measure coincide, because −W is a also Wiener process, and
the DRS is a martingale.
Question:

◮ When the effect of the jumps is such that this symmetry
property hold for Lévy markets?

◮ Which are the jump distributions that preserve the
symmetry?



Merton Model

Consider Merton Jump Diffusion model: i.e

Π(dy) = λ
1

δ
√

2π
e−(y−µ)2/(2δ2)dy ,

Bates (1997) finds that this symmetry hold true if

2µ+ δ2 = 0.

But: what happens for Lévy markets?



For Lévy markets, as

ψQ̃(z) = ψQ(1 − z) − ψQ(1)

we impose

ψQ(z) − (r − δ) = ψQ̃(z) − (δ − r)

= ψQ(1 − z) − ψQ(1) − (δ − r),

and obtain3 the symmetry condition in Lévy markets is:

ΠQ(dy) = e−yΠQ(−dy).

that generalizes Bates (1997) result for Lévy markets, and
answers a question raised by Carr and Chesney (1996)

3Details in Fajardo-M. (2003, 2006)



Symmetry condition on the density of the jump
measure

Assume that our Lévy measure can has a density:

ΠQ(dy) = π(y)dy .

Our symmetry condition then is

π(y)dy = ΠQ(dy) = e−yΠQ(−dy) = e−yπ(−y)dy ,

concluding that the symmetry condition is

π(y) = e−yπ(−y).



Symmetry in Merton model

The condition is

λ
1

δ
√

2π
e−(y−µ)2/(2δ2) = e−yλ

1

δ
√

2π
e−(−y−µ)2/(2δ2)

that equating the exponets gives

(y − µ)2 = 2δ2y + (y + µ)2.

The quadratic terms cancels, giving

−2µy = 2δ2y + 2µy ,

that gives Bate’s condition:

2µ+ δ2 = 0, or
µ

δ2 = −1
2
.



Corollary
Under the symmetry condition the volatility smile curve is
symmetric in the log-moneyness m = log(K/F ), with

F = e(r−δ)T S,

the futures price.

Proof First observe that, due to the put call parity, the implied
volatiliy can either be determined equating the call prices or the
put prices. Introduce

X o
t = Xt − (r − δ)t .

Condition St/e(r−δ)t is a Q-martingale, implies EQeXo
T = 1. The

duality condition in terms of ψo is

ψo(z) = ψ̃o(z).



Now we introduce m in our formulas.

Call(S0,K , r , δ, ψQ) = e−rT EQ(S0eXT − K )+ =

= e−rT EQ(S0eXo
T +(r−δ)T − K )+

= e−rT F EQ

(

eXo
T − K/(S0e(r−δ)T )

)+

= e−rT F EQ(eXo
T − em)+

= e−rT F × C1(m, ψ
o).



Similar computations show that

Put(K ,S0, δ, r , ψQ) = e−rT EQ(S0 − KeXT )+ =

· · ·

= e−rT K EQ(e−m − e−Xo
T )+

= e−rT F P1(m, ψ̃
o)

= e−rT F P1(m, ψ
o),

the last equality by the symmetry condition.



Conclussion

Finally, if σi = σi(m) is the implied volatilty for the call option
and a log-moneyness m, we have

F C1(m, ψ
o) = K P1(−m, ψo),

F C1

(

m,
σ2

i

2
(z2 − z)

)

= K P1

(

−m,
σ2

i

2
(z2 − z)

)

.

As the l.h.s terms of this equation coincide, according to the
definition of the implied volatility, the r.h.s. coincide too, giving
that the implied volatility (determined by the puts) for −m is the
same:

σi(m) = σi(−m)



Skewness in Lévy Markets

We propose to consider a Lévy market with jump structure of
the form:

Π(dy) = eβyp(y)dy ,

where p(y) = p(−y). Most models satisfy this assumption. If
we apply the symmetry condition in Lévy markets, we came to

β = −1
2
.

In this model we can quantify the deviation from symmetry.



We observe:

◮ In ForeX markets we expect β + 1/2 ∼ 0.

◮ For stocks and indices we generally have β + 1/2 << 0.

◮ There are some exceptions.



Further research

◮ Robustness of β across different models (CGMY, Meixner,
Merton, Hyperbolic, etc.)

◮ Asymmetry premia: quantify movements of prices
according to movements of β.

◮ Time dependent β(t), as longer maturities suggest more
symmetric markets.
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